PIONEERS IN SCIENCE AND TECHNOLOGY SERIES
ORAL HISTORY OF JOHN BACKUS
Interviewed by Clarence Larson
Filmed by Jane Larson

January 3, 1984
Transcribed by Jordan Reed

MR. BACKUS: …I will try to make it brief. My education was a very chaotic affair in that I was not a good student. I used to flunk out of school regularly and go to prep school, flunked out four years in a row and after that I went into the Army. In the Army, I was sent to a lot of schools and did all right, finally going to medical school for a while briefly after having attended a lot of other schools.
MR. LARSON: What medical school did you attend?

MR. BACKUS: Well, it’s now called the New York Medical College, yes, New York Medical College. It was called Flower Fifth Avenue Hospital at the time I went there. And after I got out of the Army, I was living in New York City and didn’t know what I wanted to do at all. The only thing I knew was I wanted to build a good hi-fi sandwich that wasn’t available in those days. So I went to a place called the Radio Television Institute which taught people how to be a radio technician essentially [inaudible] and after attending that for a while I designed a hi-fi sandwich. It didn’t worked very well, but at that point I had really my first good teacher who really got me interested in something. He had me helping and designing a radio circuit that he had been asked to work on for a magazine, he was an editor for it and he and I stayed up all one night trying to compute points of a curve for some amplifier and we were very bad at it, both of us, and it took us all night. He computed one point and I computed one point and that was about it, but somehow that got me interested in mathematics and I started taking a course or two in mathematics at Columbia University. Gradually I took more and more mathematics and discovered that I actually liked it. I always hated mathematics before because it always seemed like cooking.

MR. LARSON: That’s remarkable. For orientation again, what years were there that you spent at Columbia?

MR. BACKUS: Well, I was there from about, well, I got out of the Army in 1947 and, no, ’46, excuse me and started going to Columbia I guess around ’47 and finally eventually graduated. I had a terrible time getting in. I didn’t mention that most of the universities I had been to before, I had flunked out with such terrible grades. So they took me on probation and I managed to get through that. I got a bachelor’s degree there in ’49, then I got a master’s in math in 1950. At that point I dreaded the thought of having to teach, which I thought was what you had to do. Then someone told me about this wonderful computer idea that was being worked on at Madison Avenue and 57th Street. They said I should go down and look at that [inaudible].
MR. LARSON: What model was that?

MR. BACKUS: That was called the SSEC, the Selective Sequence Electronic Calculator which was, well it was a huge machine that filled a room about the size of this house, this entire house. It could store 150 numbers in relays, but it’s entire mathematic unit was electronic and it had, could store eight 20 decimal digit numbers in an electronic buffer storage, the buffer between the relay and the arithmetic unit [inaudible] those eight watts of storage occupied an entire wall of large hot tubes. I was hired as a programmer. I went down there and mentioned to the woman who showed me the machine that I was looking for a job and she said, “Oh, well come up and talk to the boss.” I thought, “Oh no, I can’t. I’ve got holes in my sleeves and my shoes aren’t shined and I looked terrible,” but she said, “Well, do it any way,” and I did and to make a long story short they hired me. His name was [Robert] Rex Seeber. He was one of the co-inventors of the machine. So I was hired as a programmer for that machine. It was a lot of fun to work on because you could, well it ran very slowly. It did 20 instructions a second and it had, it would usually only run for about three minutes without making an error, at which time the programmer had to be there in order to decide how to get it started again, how to reset something. Well anyway, I don’t think I should spend a lot of time, it’s a very interesting machine. I could talk about it for a long time.
MR. LARSON: At that time, you were, was your programming, it consisted of connecting the plug-ins together and so forth.

MR. BACKUS: Yes, the machine had about 30 some plug ports that wired each memory port to the bus and controlled an operation code would actually do it. Everything was rearrangeable and in fact the first program I wrote made heavy use of that to try to make the machine less error prone. I and another guy named Ted Codd, who was the inventor of [inaudible] databases was also a programmer for that machine and he and I devised a scheme for, so that you, the typical way of writing a program then was to write two routines that ran in parallel and every few instructions would compare their results. They would be doing the same thing, comparing results and if they didn’t, weren’t the same, it would stop and there would be a lot of going over it manually and resetting these paper tapes that the programs were punched on, determining where to reset them to, keying in numbers, doing all kinds of things that took a lot of time, and then restarting the machine.

MR. LARSON: This was the relay machine, at this stage.

MR. BACKUS: Yes, basically relay, except for its arithmetic device. What we did was we had the thing instead of doing that, we had each separate team go through without making any change at all, except at the very end. At the end it would compare the results and if they were correct then it would just go on. If they didn’t compare, then using the old selectors in the machine, it would change the address that the tape was referring to, go to the next instruction each time and it referred to another pair of tapes that would check that line and then return control back to this one, do one more line and run through that way. So if it did stop, it would stop on exactly on the line where the error was made and start up again very quickly. It was quite a successful device. You could hear all these things running because relays were clacking away at a great rate. Generally what happened when the device would be invoked, just the change in rhythm would usually cause it not to fail, go through sounding very peculiar making the second try to get through.
MR. LARSON: Compared to diagnostics that are now available to us today.

MR. BACKUS: Right. So that was a very interesting machine to work on. It was scrapped in 1952 [inaudible]. So after working on that for a while, I began [inaudible] transferred to work as a programmer for the 701. There I immediately began working on, well I guess, no, I did participate in programming one of the missile trajectory programs, but there, after I was working on a program that made it easier to write programs for it. It was an interpretive system that turned the machine into instead of a one address machine, into a three address floating point machine with index registers so that its considerably easier [inaudible] about one-tenth the speed of the naked machine, but that speed [inaudible] over half the 701 installations, in which there were 18.

MR. LARSON: Let’s see was the 701 the first vacuum tube…

MR. BACKUS: It was IBM’s first commercial computer and it was vacuum tubes, yes. In fact the storage on it, its Achilles’ heel was its storage, which was cathode ray tube storage, you had to scan in the [inaudible]…

MRS. LARSON: Were you still programming a machine language that [inaudible].

MR. BACKUS: Oh yes. Very much machine like. Well there was an assembler that was called regional assembler, or something like that. Its address consisted of saying A-14 and that was region A, 14 [inaudible] so that the assembler all it had to do was assign a location in A, [inaudible] so we weren’t using full symbolic at that point.
MR. LARSON: Yes. I remember I was at Oak Ridge at that time and I think we got an early 701 and the first run I think was primarily for business applications.
MR. BACKUS: Oh really? At Oak Ridge?

MR. LARSON: Then at the same time I believe Argonne, the cooperation with Argonne and the Oak Ridge National Laboratory [inaudible] but we had a 701 there and I believe we called it the Oracle.

MR. BACKUS: I remember that.

MR. LARSON: But as I remember, the 701 wasn’t, the programming was also done with plug in connections [inaudible].
MR. BACKUS: There wasn’t as many plug ports associated with the 701. There was a plug port for each of the peripheral devices…

MR. LARSON: Yes.

MR. BACKUS:...like the card reader had a plug port and the printer plug port that served as a terminal, which outputs [inaudible] it was a very elementary kind of thing. This, well I guess, I don’t know whether they ever standardized the plug ports for the 701, but they certainly did for the 704…

MR. LARSON: Oh yes.

MR. BACKUS: …[inaudible] standardize everything so that people could trade programs and stuff. So the, that, the result of that work was the programs were able to speak to code and that was, it was used a lot. I’m certainly not proud of it. It was, I mean looking back on it today, it was a very [inaudible] clumsy language to use, but it did have a number of conveniences that made it easier to use the machine [inaudible] assembly line. So, I finished that and by the time that was being finished, IBM was contemplating, I was involved in actually working on what they, an improvement for the 701. They had a committee at Poughkeepsie to consider these various improvements, they were talking about it [inaudible] which were to become [inaudible] and they were talking about it having a faster and better drum. Every time I would attempt [inaudible] why don’t you build them [inaudible] sort of interesting and they would go on talking about the speeding up of the drum and things of that sort.
MR. LARSON: Again for reference, about what year was that?

This must have been, let’s see, this must have been about ’53, I would say.

MR. LARSON: Oh yes. As I remember it, about that time, [John] Von Neumann did some consulting with IBM on some of these.

MR. BACKUS: Cuthbert Hurd had gotten, finally become [inaudible].

MR. LARSON: Oh yes.

MR. BACKUS: This kept happening for about three meetings, this effort, this group with the 701. After this happened, I thought I’ve got to get these people to consider this because, you know, half of our customers were slowing our machines down by a factor of 10 to get more usage. I figured, gosh, we ought to be able to do better than that. So I designed the incredibly clumsy, arrangement so you could build in floating point. It involved many extra registers to the machine and all this and I got up and I spent an hour describing this incredibly [inaudible] arrangement. After I had finished, Gene Ingle said, “Backus, you’re just such an idiot. You don’t have to use all those extra registers at all. You can do it like this.” By the next time, he had a complete for-retail proposal for building a floating point in a machine with no extra registers, with very little extra gear. I was very, very pleased. [Laughter] It just seemed to be a matter of getting his attention. [Laughter] So, I did do a fair bit of work with him on specifying index arrangements [inaudible] 704 should work and stuff like that. So then, [inaudible] I wasn’t really involved after that point and I wondered, you know, this thing is going to come out in a year or so now, what can we do for the program now? I thought about it and finally wrote a letter to my boss, Cuthbert Hurd, proposing that we should really invest a good deal of effort into trying to produce an algebraic pilot machine. Up until that point, speed coding had, all of its effort was to make the machine a floating point machine with indexing and the 704 was going to be a floating point machine with indexing. So that kind of dodge wasn’t going to help the program at all. So, it was clear that we had to do a lot more than we had to in the past to really make it a lot easier for the program, but if we were going to do it, it was going to be difficult because getting the necessary efficiency in the program is going to be hard. We were going to be saying what the right hoops were and try to figure that out. Obviously it was going to be a really ambitious enterprise. In any case, I wrote a one page letter, sort of outlining what we could do. He said, “Fine. Do it.”

MR. LARSON: Oh yes.

MR. BACKUS: So, he said, “You and Herb Ziller can begin working on this.” Ziller and I did. Shortly thereafter got another guy named Carl [inaudible] and then I hired another person named Bob Nelson who’s a typist, and now an IBM fellow, and shortly after he began working, he was no longer typing. He was working with Herb on the hardest part of the compiling. But basically, Herb Ziller, Carl, and I did the basic design of the Fortran language and after that we kept sort of having to hire more and more people. We didn’t know how we were going to implement the design at all. We just knew that we wanted it to be this way and had to be efficient to run.

MR. LARSON: Now this, your first Fortran language would run on which model machine?
MR. BACKUS: Oh, this was intended for the 704.

MR. LARSON: Intended for the 704.

MR. BACKUS: Yes, right. I mean, the difficulty was with earlier systems you could hide inefficiencies in housekeeping operations because most of the time the machines were doing floating point [inaudible]. So anytime you spent fussing around with computing addresses would be entirely masked by this much large time spent in addition, multiplication, or division. It would take quite a long time because you had to execute 17 million instructions to do it. Now you had one instruction to do it so that if you tried to compute the address of a matrix element by doing, computing I with N, times J, where N was the length of a row, you would be adding one multiplication and one addition to every reference to an array. That was totally unacceptable. It would triple the time to do any matrix operation.

MR. LARSON: As well as the great demand on memory also.

MR. BACKUS: Well, no, it was really just, it was a speed problem.

MR. LARSON: Speed.

MR. BACKUS: Right, I mean that was a simple way, you could think of implementing [inaudible] convert to an array, compute its address of an element by doing this adding and multiplying stuff, but we just knew that that was going to be unacceptable. The way people would compute an address, a real programmer writing a matrix multiplied program say in machine language was that he would compute the address of one element and then he would know the next time, he would remember that address and would know that the next time around, he would want the next element right next to it and he could get that by adding one or adding N the other way to the address that he already had in hand. So, the address calculation would only take on addition and that would be done by the index register. It happens anyway so it would cause nothing. We knew that if we were to succeed we would see the same thing. The programs had to be analyzed. Now we would be looking at a piece of program, the compiler would be looking at a piece of program, and would see a reference to E sub IJ and now it would have to be determined by looking at the context of that piece of code whether IJ were changing in a linear fashion. If they were changing linearly, it would know that there was some constant that it could add to the previous address for AIJ the last time around and you know, get the right code for it. If they were not changing linearly, they would have to resort to this dodge of computing the address from first principles. So, we knew that we had to have very elaborate ability to analyze every piece of code, to know how loops fit together. So essentially, that work was done by Nelson and Ziller. They did an incredible job of just taking account of many, many cases and treating each one optimally. Another big problem that he had was the 704 only had three index registries. You needed one index register for every combination of subscripts that occurred. That could be anywhere from nothing up to dozens. So we also had to face what is the register allocation problem. You want to keep these 24 quantities in three registers and so you have to sort of simulate that and move them into the registers when necessary. The problem is to make the number of interchanges minimum. That again requires a very global analysis [inaudible]. So basically we devised a primitive method for analyzing algebraic expressions and turning those into [inaudible]. Then Herb Ziller and Bob Nelson optimized the array reference, and at first they were going to solve the register allocation problem at the same time, but I suggested it as a two part problem to pull it all together. They should assume that the machine had an unlimited number of registers and to write the best code for that mythical machine. Later we would figure out, to solve the register allocation problem and turn it into a program [inaudible].
MR. LARSON: The 704 at that time, what was the memory [inaudible]?
MR. BACKUS: It was core memory.

MR. LARSON: Core.

MR. BACKUS: They had switched to core at that point. Unfortunately it was a liability [inaudible]. So, we had another principle I haven’t mentioned on that project, but one of the principles, or factors of this [inaudible] a guy named Sheldon Best, who worked at MIT and was loaned to us. He was a temporary employee of IBM while we worked on this program. He devised a very elaborate register allocation scheme which really was the model for all register allocation since then. It was extremely difficult to follow and he came up with about as optimum a solution as anyone has come up with since. In fact, it’s interesting that Fran Alan who is sort of one of today’s best experts on compiler optimization problems, looked over this Fortran-1 compiler and compared it with [inaudible]. According to her, they did, these three people basically, the whole group, they were the key optimization solvers, did a better job of optimizing than any compiler since then, up until 1978.
MR. LARSON: Oh that’s…

MR. BACKUS: For over 20 years it worked. Their work was really about as good as anyone ever did as far as optimization. We were so intent on doing a very good job of optimization that we went too far really. As the pilot has to analyze all these situations, it was taking a good deal of time and particularly in the beginning, people would write erroneous programs that would have to be decompiled many, many times before they ever ran it. It turned out, they spent more time compiling than they ever spent running the program in many cases. But…
MRS. LARSON: Were you trying to make it so optimum [inaudible]? Is that the key reason?
MR. BACKUS: No, it was just that everybody was so completely skeptical that this thing could write sufficiently good programs that it would be competitive, that it would be an economically viable thing. They thought that, I mean, programmers then wrote in an assembly line and they figured that, God, this is so difficult, so complicated that no program is going to be able to do all the clever things I can do and produce code that is nearly as good, if it’s even half as good in running speed as mine. They were, the entire programming community was convinced that we might have a nice language, but that our programs were going to run at a snail’s pace. So we figured that if amongst the first ten programs that people really tried to run in, the air and space industry, if one of those turned out to run half as fast as they would otherwise be able to make it go, then we would be finished. So that’s why we were such fanatics about doing this optimization. We had one example, one of our early test programs took about 20 minutes to compile. It was a large program and the 704 was a much, much slower machine than today’s machines. [Inaudible] but out of the 20 minutes of compiling, 10 minutes were for this register allocation part, the later part of the compiling, trying to assign indexing. It consisted of sort of, the register allocation operated by analyzing the flow of the program and then doing a Monte Carlo simulation of its running so it could figure out how often various parts of the program could run. So it knew after the simulation, it had an estimate of frequency of execution of every basic block, that is piece of code that didn’t have any branch, in it or to it, just a straight piece of code, so that each basic block would know how frequently, this register allocation process simply took the most basic block and did the register allocation for it, then took anything leading, well it took the next most frequent thing and if that was connected to this it would do register allocation matching up the interface between them, agreeing on the register assignments. It would keep building these little regions which would be separate at first, but as it became more and more the regions would come together as one region until it finally had constructed the entire program in this one region. Well this sample program spent 10 minutes doing this, but the irony was this program had used no index registers. [Laughter] So it was solving an empty problem. [Laughter] That just shows how much overboard we had gone in optimizing, but the result was, you know, despite the fact that we spent a lot of time analyzing the program, the results were good and they were better than we had… Fortran-H compilers came out much later, the mid ‘60’s and they used all kinds of sophisticated optimizing techniques that we had not thought of. It was a very formalized, well organized, but it turned out that one of these techniques would optimize something and then another technique would be applied and it would optimize something else, but in the process it would unoptimize what the first technique had done. That was only the work of Harwood Kolsky and another guy at the Palo Alto Scientific Center there who were really interested in optimizing big weather programs. They analyzed what Fortran-H was doing and discovered all these clashes and fixed them up so that they didn’t clash and finally produced a compiler that did a better job compiling than the Fortran-1 compiler had done 20 years earlier. It was sort of a neat thing to learn. I had always thought Fortran-H had surpassed our optimization techniques, but it was very interesting to learn from Fran that we really hadn’t until this Fortran-H extended Fortran-1.
MR. LARSON: It went along with Fortran-H. I’m not familiar with all the different names, but she referenced to Fortran with the Roman numeral four and all kinds of other things. How many of those modifications came about through the years.

MR. BACKUS: Oh, good Lord, lots. After my group really finished working on the Fortran, we did Fortran-1 and 2. Fortran-2 added the ability to write separate [inaudible] to compile separately. [Inaudible] symbolic addresses [inaudible]. They were just relocatable programs. I guess that they were really the originals [inaudible]. Then we spent a lot of time handling the problems. The first distribution Fortran-1 was tested for a long, long time, before it was distributed, but there were still many bugs to be discovered we found later. Although there was one interesting episode, we were going to originally distribute the program as a set of binary cards, but David Sayer stayed up all one night trying to produce, you know, as many, many decks of these binary cards. They succeeded in producing two because the card, it was too heavy and all the strain on the card punch to produce 2,000 binary cards over and over again. Anyway, [inaudible] and then later David Sayer devised a way of distributing it on tape. That became the standard way of doing it. One of those decks got sent out to apparently Westinghouse [inaudible] and they got it on a Friday afternoon. It arrived just this box of cards with no information whatsoever. [Laughter] Herb Wright was in charge of installations and him and some of his colleagues thought, “Well, this is probably the Fortran deck. It came from IBM, its binary and it’s so huge, you know [inaudible].” So they thought they would just try it out. They did and they put on a completely blank set of tapes on every tape reel and they put this deck of cards in the card reader and pressed “start” and the thing sort of read in, some tapes moved and lights flashed and then all the cards had read in. The tapes had rewound and the machine stopped. They said, “Well, okay.” Somebody had written a little Fortran program that didn’t give any other input. They decided that would be a good test program. So they put that in the card reader and pressed “start” and it read in and then they noticed that something printed on the printer. They went over and read it and it said, “Line such and such,” there was a comma missing after a certain place in this certain statement and they looked at the statement and sure enough there was a comma missing where there should have been one. They punched up another card for that, put the whole program back in it, pressed “start” again. It read in, a bunch of cards punched out, a bunch of binary cards, and they said, “Well, this must be the program.” They took that and indeed it was a self-loading program. They just took this little stack of cards out of the card punch, put it in the card reader and pressed “start” again. [Laughter] This time the printer printed out 28 pages or results that were correct, except they had made format errors. You know you have this format statement that arranges the text. They had made a couple little errors in the format statement, but they were, they said that was the last time they got correct answers from Fortran for many moons.
MR. LARSON: That’s a remarkable story that they would have the courage to take cards without instructions to…

MR. BACKUS: And being binary it was a miracle that it all went through because the system had a lot of errors in it. There was just a sheer number that didn’t work.

MR. LARSON: Fortran was the basic language for very long. What was the next computer language that began to appear on the horizon?

MR. BACKUS: Well, I guess that was really ALGOL, ALGOL-58, which you really don’t hear much about. A group of the German computing society began, sort of decided that they were going to develop a language. They thought it was silly to develop on our own, let’s see if we can get together with the Association for Computing Machinery and have an agreement upon an international language and write programs. So [inaudible] and had a sort of climax meeting in Zurich where we argued endlessly and came up with this language which was called ALGOL, ALGOL-58. I took part in this and in fact I was asked by SHARE to be their representative in this matter and when it was over I recommended to SHARE that they adopt ALGOL-58 as their standard language and SHARE did that. SHARE being the organization [inaudible] that was established to share programs so that everybody could write their own. SHARE was very gung-ho to do this. They wrote a compiler for it and adopted it as their official language…
MRS. LARSON: These were people in Germany?

MR. BACKUS: No, this was in the United States.

MRS. LARSON: Oh.

MR. BACKUS: SHARE is a national organization of, it’s not an IBM organization. It’s an organization of IBM customers [inaudible], established to set standards and make it possible to interchange programs. One of the first things they did for example was standardize the plug ports on the 704. If they hadn’t, this little story about Fortran wouldn’t have been possible because they wouldn’t have been able to read. If there wasn’t a standard plug port for the card reader, they couldn’t have even begun. So, that effort sort of, adopting ALGOL-58 went forward in this country and in Europe, but there was a, the aerospace industry was really disappointed because it was harder to compile ALGOL to a really efficient program than it was with Fortran because Fortran provided a clear demarcation line between what it would treat efficiently. You knew when you were writing the program, if you used do-loops, it would do things efficiently and if you tried doing the same thing with “ifs” and “go to’s” it wouldn’t do those nearly as well. Whereas, ALGOL, a lot of the techniques in it were, you were a lot freer to write and therefore required a lot more analysis, complex [inaudible]. So the aerospace industry was not terribly pleased with it, but shortly after they switched to ALGOL-60 and the same kind of international committees got together and came up with ALGOL-60. That completely teed off SHARE, after having this sizable effort to adopt ALGOL-58 and have it tossed out the window so quickly. Plus, the problems with coming up with object code for ALGOL-60 was, sort of the whole block structuring, was really intended to make it easy to compile programs in a small machine. Europeans were concerned because most of their machines had very small [inaudible]. You couldn’t do separate compilations of [inaudible]. It took a long time before ALGOL compilers [inaudible] and by that time, SHARE was disinterested. [Inaudible] and I guess the next major language was EL-1 [inaudible].

MR. LARSON: Oh yes.

MR. BACKUS: After taking part in the ALGOL effort, the one contribution I really made to that was a proposal on how we could, it was becoming very clear to me, I was asked to describe ALGOL-58. I had to write a paper for a [inaudible] and trying to write that paper, we had this terrible trouble of trying to say what the language really was, so that we could dot every I and cross every T. If you were to make a standard, you should be able to do that. So, I fortunately had just taken a course with Martin Davis at the [inaudible]. He spent a lot of time talking about post work productions and I adopted that as a way of describing syntax of ALGOL-58. [Inaudible] my ideas very much, but it provided a very simple way of very precisely saying what the syntax of the language was. I had also described what [inaudible] that was a lot harder and seems to remain that way, but that, I wrote that and finally finished that paper in which I described this method, using to [inaudible]. [Inaudible] and they made kind of a backdoor appearance during the proceedings. It was a very dull paper because of all this [inaudible]. I’m sure almost no one read it, but [inaudible] did read it and as the editor and really the guiding force for getting together the specifications for ALGOL-60, he had [inaudible] same technique by using a much more [inaudible] changing a few symbols. It was much more readable [inaudible]. He used that notation to describe ALGOL-60 which was very successful [inaudible] syntax of the program.
MRS. LARSON: [inaudible]?
MR. BACKUS: Yeah, it was called [inaudible]. I guess [inaudible] was the first one to use the term Backus form [inaudible]. [Inaudible] Peter Naur had done a lot to make it workable and it was called the Backus-Naur form. [inaudible].

MR. LARSON: That’s a fascinating story. As they say, I’m very much of a novice in this, but these, there are so many other languages [inaudible] BASIC…
MR. BACKUS: BASIC, right.

MR. LARSON: …for simple people.

MR. BACKUS: That was basically John Kemeny’s.
MR. LARSON: That apparently became very popular because it was so easy to use. Are there any other comparable languages that are on the horizon that would be comparable in adoption [inaudible] BASIC.

MR. BACKUS: I doubt it. The trouble with Fortran and BASIC [inaudible] all the others are complex basically. Even Fortran has a manual [inaudible] BASIC, well I have, my BASIC manual for my PC is 500 pages. [Laughter] I mean just because, programing basically becomes a process of browsing through these 500 pages, trying to find something. Each one describes an operation or a statement, or a function of something [inaudible] useful, but it’s a terrible language as far as writing a sizeable program because all the variables are global variables. So if you call something X [inaudible] and then you forget that you called something X and that’s originally [inaudible] calls X, you’re in big trouble. [Laughter] That happens an awful lot.
MR. LARSON: Of course BASIC has a problem with speed too.

MR. BACKUS: That’s right.

MR. LARSON: That’s another interesting experiment [inaudible] assembly language is a tremendous difference.

MR. BACKUS: Although again another strange irony has developed on a personal computer. If you write something in BASIC and you compile it, it will run faster than the corresponding program written in Fortran compiled with the PC Fortran compiler which is not as good as the exit compiler.

MR. LARSON: That’s amazing.

MR. BACKUS: It’s just, the Fortran compiler is standard to IBM now. [Inaudible]. [Laughter] I’m sure there are better ones. It should say it’s not IBM. It’s Microsoft [Laughter].

MR. LARSON: That’s right. [Laughter] Microsoft is [inaudible] operating systems.

MR. BACKUS: [Inaudible].

MR. LARSON: Well…

MR. BACKUS: So, Pascal is one of the standard languages [inaudible].

MR. LARSON: More standard. Well, with regard to your present efforts, would you care to say anything with regard to your projects that you are now carrying out and their implications for the future?

MR. BACKUS: Okay, yeah. After finishing Fortran, about 1960, I worked for about 10 years on a mathematical problem that I thought was of significance and fundamental importance. I kept making up programs to keep working on it, but finally after 10 years I just had to shelve it. It was difficult. I worked very, very hard for 10 years and filed away this stack of notebooks full of theorems that I could never get to where I wanted to be. But anyway, that work let me turn back to the idea of, I had to write some programs to test some ideas in that work. I wrote some Fortran programs. I wrote some [inaudible], APL programs. The APL programs were good, but they were slow. The [inaudible programs were much slower. The Fortran programs were terrible to write and ran almost fast enough, but nothing was really very good. When I did quit, I thought things had been in a static condition as far as programing was concerned. Since Fortran, all these languages kept coming up and keep having thicker and thicker manuals, and it does make it a little easier to write a program, if you imagine, can master all that material, but it doesn’t make it that dramatic even [inaudible]. If you write a program now [inaudible] it’s almost as hard work [inaudible]. So it seemed we ought to be able to do better. I spent a lot of time, well, I started working on [inaudible] trying to come up with a simpler concept of what a program was and after, well, I can’t give you a good chronological way that this developed because it doesn’t make sense. Out of a lot of chaos came a little more clarity and a little more clarity and so on. Finally I had something that was both powerful and simple and offered a solution to understanding this new functional approach to languages. I could look back and conventionalize and see what I thought were very fundamental difficulties with them, with fundamental reasons why we hadn’t made much progress in the last 20 years. One of those problems was that it’s very hard to put programs together. What you would like to be able to do is have a library of very useful programs and when you set out to write a new program, to find that it could take things from this library and just put them together and with very little effort have a program you want. People who generally write programs find that this is not the case. Generally, you start from scratch and you could maybe use a printing program, or a [inaudible] program, or a matrix package, but aside from that you’re beginning at square one every time. The reason for that is that programs are basically a mapping of a store into a new store, given a set of boxes with things in them, each box has a name and the program takes things from boxes A and B and combines them a certain way and put them back in the boxes of C and D. Now such a program if you tried, if I had a program whose purpose is to map matrices into their inverses and another program that maps matrices into their transpose and I want to take the transpose and the inverse of the matrix, you would think, well, I do one program and then I do the other and I’ve got what I want. I just put them together by composition and I’ll get the right answer for sure. You don’t unless it just so happens that the first program puts its results in the box from which the second program takes its input and that doesn’t generally happen that way. So, programs have to be written with a common storage plan in order for them to be put together in a certain way. Since you have to start with a storage plan to get a group of programs that are going to work together, it’s that fundamental reason that you are always starting from scratch. You start with a problem. You have to devise the storage plan for your problem and then you have to write the programs that utilize that storage plan. So, another reason that you are always starting from scratch, too, is that housekeeping operations occupy an awful lot of what a program does. If you’re working with arrays of data, a lot of the work consists of computing the addresses of elements [inaudible], picking up those elements, combining them with other elements and putting them back, computing a place to put them back into storage. The net effect of all this is it’s suppose to do something to this large unit of information and produce another large unit of information. But you always have to deal with, you write a few assignment statements to pick up things with subscript A and I, J, and K, and you produce one word, an assignment statement that is only capable of producing a value that can be put into a single word. You do that and you have a bunch of assignment statements and you surround them by, say, do this for I equals one to the tenth, do that for all that is J to the 13th or something, and the net result of all that is what you want, somehow or other you’ve figured it out that it comes out that way. But it’s, all this housekeeping, the housekeeping operations are represented by these statements that say do for this, do for I equals this, J equals that, and the whole mass of statements that have I’s and J’s scattered through, so that’s totally unreproducible. There is no housekeeping operation that you can carry from one problem to the next because it’s all represented by these scattered operations instead of by a coherent single operation that does some housekeeping. So that’s another reason we start from scratch always. You can’t carry over some housekeeping stuff which is a very large percentage of what we work on. So the third reason programing is very weak is that it’s all concerned with moving individual words about. [Inaudible] the largest unit of information you can deal with therefore [inaudible] files and matrices and stuff like that, you have to translate all those thoughts into repetitive operations using actual words instead of [inaudible] single entities to work with [inaudible]. So the functional approach that I work with, first of all, it doesn’t use addresses at all. This program simply maps something into something else. So you can’t compose programs, get the composition of their purpose because conventional programs their purpose is not the same as what they do. The purpose of a matrix inversion program is to invert a matrix, map a matrix into a matrix, but what it really does is map a store into a store. You have to think, well, you think of it as a matrix conversion program because if you put a matrix here and turn the program on, it will produce a store which the result is there. Whereas in the functional approach, a program just takes the matrix, not a store and produces another matrix. So [inaudible] programs that operate, you know, if it makes sense to people to compose their purposes, the functional programs are their purpose. They do their purpose directly instead of putting them together when they sense to put them together and get what you would expect. There is no address problem at all. There is no concept of an address. They are just things applied from [inaudible]. These functional programs do housekeeping operations since there are no addresses and you can’t compute any addresses [inaudible]. They do them by rearranging the data like a very fundamental housekeeping operation in functional programing is transpose it to [inaudible] rearranges and another housekeeping operation is to distribute one thing over a set of things [inaudible] the second element of the pair is a sequence of things. The result of it is it’s compared with every number of the sequence, the sequence of pairs. By such operations, you know when you think of actually doing this it’s terribly inefficient, if you are actually to rearrange all this data. I guess the best way to illustrate this is to describe a functional matrix multiplication program. Its argument is just a pair of matrices and each matrix is represented as a sequence of its rows and the program has simply four steps. The first step says transpose the second matrix. The second step says pair the right matrix with every row of the left matrix. So you made a whole bunch of copies of this entire matrix and the third step says for each pair that you now have, which is a row in a matrix, pair that row with every column [inaudible]. So that gives you a set of pairs. The result is a sequence of things, each of which are a set of pairs, a row and a column, and they turn out to be arranged in just the right way so that if I do enter product [inaudible] that’s the answer. So the last operation says apply to all. Apply to all is a combining formula that changes a program into a new program. Apply to all says take whatever program this is, don’t do it, for the argument to every element, so that if I say apply to all as one to a set of numbers it will just add one to each number. It wouldn’t make sense to say add one to a set of numbers, but it does make sense to say apply to all one, add one, etc. In this case, I have to say apply to all one. Well apply to all entered product because I’ve got this set of pairs. The first apply to all drives all entered product [inaudible] what’s going to be a product row and the second one gets the acquired entered product row column pair. The reason you have to do apply to all twice is because you have to have it arranged so it comes out as a set of rows instead of just a [inaudible]. You have to group all those pairs into the rows of the product matrix. [Inaudible].

MR. LARSON: That’s really fascinating.

MR. BACKUS: People look at that program and think what a weird program, but it does have a lot of advantages over the standard Fortran program because it, first of all, it’s first three operations are housekeeping operations and they can be, those are useful housekeeping operations that can be used in many, many programs. You can build up very complex housekeeping operations that are essentially rearranged for sub-data that you can use over and over again, so that if I had those three operations I could optimize it in some way, but it’s still an operation. Secondly, it describes really the essence of matrix multiplication. It doesn’t say that you have to, like when you’re doing the entered products, you can do those in any order. You can do them all at once. In fact, a guy in North Carolina has designed a machine that you can essentially give it that same program and without telling it how to do it, just give it that, and it will wind up doing all those multiplications simultaneously.
MRS. LARSON: [Inaudible].
MR. BACKUS: Right. Right. So that gives you a lot of flexibility as to actually, it tells you at a very high level what the matrix multiplication is and allows you to do it in a great variety of ways, whereas, you know, the Fortran says you must pick up A-1-1 and B-1-1 and you must multiply those, pick up the next ones, multiply those, add those to the first one, before you can do anything else. You have to kind of execute the Fortran program to begin to understand what the hell it’s doing, you know. [Laughter] It would take a lot, it’s impossible to tell what most of the Fortran or ALGOL programs really are doing unless you have inside information.
MRS. LARSON: Almost like comets.

MR. BACKUS: Like comets, right, sure.

MR. LARSON: That’s right.

MR. BACKUS: Whereas this program is more of a global description of what’s going on. The final element in this approach is that it focuses, the standard programing focuses on putting together objects to build the answer, start with the objects you are given at the beginning and you are told how to put them together to create the object that is going to be the answer. Of course these objects are kind of abstract, but you’re really talking about mythical objects all the time. In a very mathematical sense, that’s what the lambda catalyst is all about. If I want to build a certain function that’s going to say, add two things, make it simple. It says well, you’ve give, let’s say you’re going to add three things. Start out with a plus which will add two things together. So you say what is this function? It is lambda X, lambda Y, lambda Z, dot, X plus Y plus Z. So you’ve given the thing from which you’re going to build the function one which is plus, but if you don’t build it from plus, you descend from this level of functions the level of objects and you say, well, you want to do that. Let’s take the object of X, Y, and Z, then we’ll combine, use the given operation to make this do the operation plus and we’ll build X plus Y and then X plus Y plus Z and that’s going to be the answer. So how do we turn this funny object X plus Y plus Z into a function that we want? Well, we abstract, it’s called abstracting the variables. So take away X plus Y plus Z, take away X, Y, and Z, and you’re left with the function that you wanted in the program. This approach that I’m developing works differently. If you’re given some programs which you want to build a new program, you do it not by going down the object level and building the answer and then abstracting the variables away. See the object approach, those variables are necessary. You have to say I want this to work for any X, Y, and Z. So you have to have these funny variables. In the approach I’m developing, you don’t need any variables because you’re given certain programs. To start with it just gets a plus and you want to build that will add up something that is three numbers instead of two. The way I go about it is you have a functional which is an operation that you can apply to programs to get new programs. So in this case I have a functional called insert which if you apply it to plus will give you something that will add up not only three numbers, but any numbers. So I have a few set of combining forms, it’s called, that allow you to start with a primitive set of programs to give, like plus, like these housekeeping operations [inaudible] and build new programs without ever talking about objects at all. So that you can, those combined forms are composition. First apply this thing, and then apply that to the answer that you get. Another [inaudible] apply this to the argument and if the answer is true then apply this function. If it’s false, apply that function and the third basic one is one that you can’t use [inaudible]. You can use composition and condition for combining conventional programs but this other one is a very basic one you can’t use [inaudible] and it’s called construction. If I write construction of the F and G, where F and G are two programs, the result of applying that to some object X would be just a pair of things that you get by applying F to X and applying G to X. So the construction FG applied to X is the pair FX and GX. It’s an enormously simple thing, you see. It’s very, very powerful and useful, but you can’t use it to combine conventional programs because, suppose I have conventional program P, and another conventional program Q. What programs get applied [inaudible] store to produce a new store. So I apply P and Q to a store, construction store and I get a pair of stores, but a pair of stores is not a store,…
MRS. LARSON: No.

MR. BACKUS: …whereas, in this functional world, a pair of objects is an object so that I can put programs together to get a program. You can’t, since a pair of stores is not a store, a mapping translates [inaudible] program because it’s not very useful to have a pair of stores. Because now I want the contents of cell A, well, in which store?

MR. LARSON: Yeah.

MR. BACKUS: So that’s, one of the beautiful things that sort of fell out of all this that I didn’t know when I was developing, I just thought it was a powerful way to think and write a program, but it turns out that this is associated with the mathematics of programs. See, we’re normally working with, doing object level programing, that is this business of providing objects to form the answer. The mathematics that are associated with that kind of program is the mathematics of objects. So you can prove things about the objects that you are talking about, but you can’t think about the programs because that’s really what you really want is to have general laws about the programs and say, if I build a program this way, and if I build it this way, they do the same thing. It turns out that these three combining composition, conditions, and construction, all three pairs of them are related by a very powerful algebraic law. It’s like the distributive law of arithmetic. Using those laws, there just, for all life forms there are lots of associated general laws, from that proved lots and lots of theories about, that take the form for all programs P, Q, R, and S, this expression of P, Q, R, and S, is the same as this expression of P, Q, R, and S. So you have like the algebra of numbers, except you have more operations. Numbers just have two basically [inaudible] four, five or six operations, but lots of powerful laws related and the result is you can prove a lot of general theorems that are useful theorems for proving correctness of programs, for optimizing. You can say here’s this program. I can see that that’s an instance of this side of this law. So I can transform it into the other side of that law by just applying it and I can keep on doing that and get programs that look enormously different from what I started with which are guaranteed to always do the same thing. It doesn’t depend on the details of the operations which were built.
MR. LARSON: That sounds like it’s a monumental task to get to this.

MR. BACKUS: To get it working.

MR. LARSON: But it has such usefulness to get it to work.
MRS. LARSON: [Inaudible].
MR. LARSON: Yes.
MR. BACKUS: Anyways it’s sort of fortunate that this happens because as I’ve described, these programs [inaudible] enormously inefficient as stated and so the problem of getting these programs to run fast means that you have to transform them very radically. We have found for example that we can’t introduce functions that I call Fortran constructs, as a kind of joke, but the reason I call them that is because while they are pure functions, it is very clear how to implement them as a Fortran program. So you can have a lot of [inaudible] laws involving these Fortran constructs. You can start with a program like the matrix multiplier and you can apply a Fortran construct that is the identity function for pairs of matrices so that composing the matrix multiplier program with this Fortran construct doesn’t change it because it’s the identity function for every legitimate argument. Then I can sort of have an identity that says the first operation of the program composed with this Fortran construct is another Fortran construct. So I’ve kind of eliminated one operation from the original program. Now I have a program that is three operations composed with the Fortran construct and I peel off another one using another identity. So finally I’ve peeled them all off and the original program is the same as this Fortran construct, which it is. In fact, doing that this Fortran construct is the exact equivalent of the original, the conventional Fortran program for matrix multiplication that uses address modification, as sort of an analogue of the address modification.
MR. LARSON: Power tool to get all this together. That is a very powerful tool and so many problems…

MR. BACKUS: Yeah, I think the real problem has always been computing with optimization. Writing a program is hard because you’re thinking about efficiency. If you weren’t to think about efficiency and had sufficiently powerful ways of expressing yourself, it would be much easier to write a program. You know, the efficient program is usually far more complicated than the program that says what the essence of what you want to do is. To finish this up, the other implication of this work, it does not, it introduces parallels in a very powerful way. The construction is a way of building a program that says I don’t care what order you do these things in, you can do them all at once, and so it has given rise to a lot of thinking about new architectures for machines that will run in parallel and that certainly gives you [inaudible]. But again the interesting thing about one of the big problems of getting a parallel machine to run is that you have to optimize the bejeezus out of a program to get to use the parallels. So we’re very hopeful that this algebra program will help to optimize in a different direction to get the program to run efficiently on some parallel.

MR. LARSON: The implications are simply staggering compared to other things we are thinking about now.

MR. BACKUS: It’s very, it’s hard to, it’s a completely different way of thinking about things. It really boggled my mind terribly for a while. I have been told that some people have been teaching this to people who have not been taught how to program. They don’t find it nearly as hard to learn as somebody who has written Fortran programs for basic programs.
MR. LARSON: I could see how that would be because you don’t have that mindset. These new concepts [inaudible]. This has been a fascinating exposition bringing us all the way from the beginnings you might say of language up to what the future has to hold for us. We want to thank you for this wonderful exposition through this. This will be a very valuable addition to our collection in the history of science and technology. Thank you very much again.

MR. BACKUS: I appreciated it…

[End of Interview]
31

